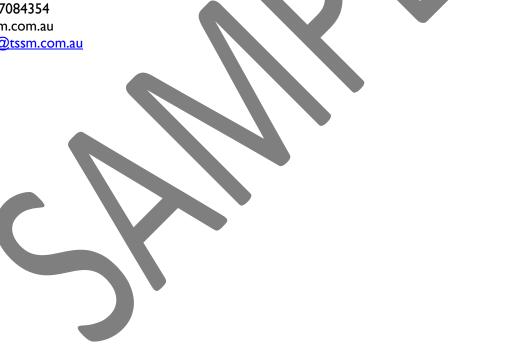


Exam Practice Guide

Units 3 & 4 Mathematical Methods (CAS) Examination 2

Key Features:

- √ 119 original examination style questions on all examinable topics.
- ✓ Full solutions and a marking guide to all questions.
- ✓ Separated into key topic areas within each Area of Study, enabling students to master one topic at a time.
- ✓ Written by VCE assessors who mark the real examinations.
- ✓ Excellent resource for examination practice.


Helping VCE students be the best they can be.

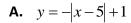
Copyright © TSSM 2010

TSSM ACN 099 422 670 ABN 54 099 422 670

A: Level 14, 474 Flinders Street Melbourne VIC 3000

T: 1300 134 518 F: 03 97084354 W: tssm.com.au E: info@tssm.com.au

CONTENTS

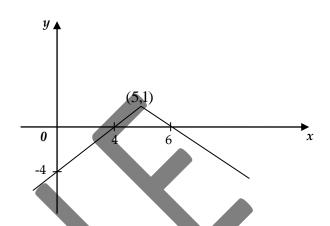

AREA OF STUDY 1: Functions and Graphs	Page
Topic 1 – Functions and their graphs	4
AREA OF STUDY 2: Algebra	
Topic 1 – Algebraic techniques	31
Topic 2 – Transformations	48
Topic 3 – Algebra of functions	51
AREA OF STUDY 3: Calculus	
Topic 1 – Differential and integral calculus	59
AREA OF STUDY 4: Probability	
Topic 1 – Continuous random variable	92
Topic 2 – Normal distribution	99
Topic 3 – Discrete random variable	103
SOLUTIONS	118

AREA OF STUDY 1: Functions and Graphs

Topic 1 – Functions and their graphs

Question 1

The equation of the curve at right is:



B.
$$y = -|x+5|+1$$

C. $y = x-4$
D. $y = -|x-5|-1$

C.
$$v = x - 4$$

D.
$$y = -|x-5|-1$$

E.
$$y = |x - 5| + 1$$

Question 2

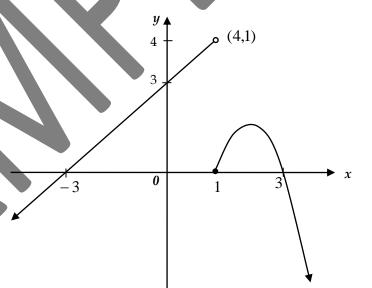
The equation of the curve at right is best described by

A.
$$y = \begin{cases} -(x-2)^2 + 1, & x \ge 1 \\ x + 3, & x < 1 \end{cases}$$

B.
$$y = \begin{cases} -(x-2)^2 + 1, & x \ge 1 \\ x - 3, & x < 1 \end{cases}$$

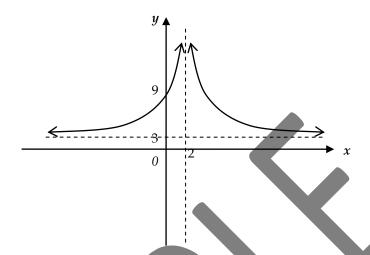
C.
$$y = \begin{cases} (x-2)^2 + 1, & x \ge 1 \\ x+3, & x < 1 \end{cases}$$

A.
$$y = \begin{cases} -(x-2)^2 + 1, & x \ge 1 \\ x+3, & x < 1 \end{cases}$$


B. $y = \begin{cases} -(x-2)^2 + 1, & x \ge 1 \\ x-3, & x < 1 \end{cases}$

C. $y = \begin{cases} (x-2)^2 + 1, & x \ge 1 \\ x+3, & x < 1 \end{cases}$

D. $y = \begin{cases} -(x+2)^2 + 1, & x \ge 1 \\ x+3, & x < 1 \end{cases}$


E. $y = \begin{cases} -(x+2)^2 + 1, & x \ge 1 \\ x-3, & x < 1 \end{cases}$

E.
$$y = \begin{cases} -(x+2)^2 + 1, & x \ge 1 \\ x - 3, & x < 1 \end{cases}$$

Question 3

Part of the graph of a function with rule $y = \frac{a}{(x-b)^2} + c$ is shown below.

The values of a, b and c respectively are

- *a b c* **A.** 6 2 3
- **B.** 6 -2 3
- **C.** 24 2 3
- **D.** 24 -2 3
- **E.** 63 3 2